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Nonlinear Faraday resonance 
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Institute of Geophysics and Planetary Physics, University of California, La Jolla 

(Received 26 January 1984 and in revised form 24 April 1984) 

A cylinder containing liquid with a free surface is subjected to a vertical oscillation 
of amplitude e g / d  and frequency 20, where w is within O ( m )  of the natural frequency 
of a particular (primary) mode in the surface-wave spectrum and 0 < e 4 1. A 
Lagrangian formulation, which includes terms of second and fourth order in the 
primary mode and second order in the secondary modes (which are excited by the 
primary mode), together with the method of averaging, leads to a Hamiltonian system 
for the slowly varying amplitudes of the primary mode. The fixed points (which 
correspond to harmonic motions) and phase-plane trajectories and their perturbations 
due to linear damping are determined. It is shown that e > 8, where S is the damping 
ratio (actual/critical) of the primary mode, is a necessary condition for subharmonic 
response of that  mode. Explicit results are given for the dominant axisymmetric and 
antisymmetric modes in a circular cylinder. Internal resonance, in which a pair of 
modes have frequencies that approximate w and 20, is discussed separately, and the 
fixed points and their stability for the special case w 2  = 2w, are determined. Internal 
resonance for w 2  = w1 is discussed in an appendix. 
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1. Introduction 
The subharmonic excitation of surface waves in a vertically oscillating basin, 

originally observed by Faraday (1831 ), has been analysed by Rayleigh ( 1883 a ,  b ) ,  
Benjamin & Ursell(1954), Dodge, Kana & Abramson (1965), Ockendon & Ockendon 
(1973) and Henstock & Sani (1974). Benjamin & Ursell reduced the description of 
small disturbances to Mathieu’s equation and invoked the known results for the 
stability of the solutions of that equation to support Rayleigh’s conclusion that the 
primary oscillations of the free surface occur a t  half the frequency of the oscillation 
of the c0ntainer.l Ockendon & Ockendon (1973) extended the analyses of Rayleigh 
and Benjamin & Ursell to small but finite amplitudes but did not calculate the 
parameter that measures the effects of nonlinearity. The present analysis provides 
an explicit result for this parameter and incorporates linear damping. 

Dodge et al. (1965) have given a finite-amplitude analysis for a circular basin that 
should be equivalent to that developed here, but their equations of motion for the 
modal amplitudes violate reciprocity conditions that are implicit in the underlying 
(Newtonian) mechanics; see Appendix E. Henstock & Sani (1974) also have given 
a finite-amplitude analysis for a circular basin, but they applied the free-surface 
boundary conditions a t  the equilibrium, rather than the diplaced, position of the free 

t Benjamin & Ursell’s (1954) statement that their work was ‘made possible by the development 
of Mathieu functions since Rayleigh’s time’ suggests that they may have overlooked Rayleigh’s 
1887 paper, in which he applies the theory of Hill’s equation to subharmonic excitation, albeit not 
explicitly to Faraday’s problem. 
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surface and obtained a correction to  the resonant frequency that is first order in the 
amplitude (the true correction must be second order). 

Keolian et al. (1981), Gollub & Meyer (1983) and Cilberto & Gollub (1984) have 
recently reported observations of strongly nonlinear motions in vertically oscillating 
basins, some of which involve either resonant coupling between several modes or 
chaotic instabilities or both. These strongly nonlinear motions presumably lie outside 
of the scope of the present investigation. 

I begin my analysis, in $ 2 ,  by expressing the motion of the free surface in terms 
of the corresponding normal modes and calculating the Lagrangian through terms 
of fourth order in the modal amplitudes on the provisional assumption that 
dissipation is negligible. This calculation is based on an earlier formulation for 
nonlinear gravity waves in a cylinder of arbitrary cross section (Miles 1976), 
equations from which are cited by the prefix I. Capillary effects, which dominate 
gravitational effects for sufficiently small wavelengths (as in Faraday’s experiments), 
are considered in Appendix D. 

Appealing to  the results cited above, I assume that the natural frequency of the 
primary mode, say wl, approximates half the frequency of the vertical displacement 
of the basin, 

zo = a, cos 2wt (w2 la0l 4 9 ) .  (1.1) 

Quadratic nonlinearity implies the excitation of time-independent and second- 
harmonic components of both this primary mode and certain secondary modes. 
(Higher harmonics are excited through higher-order interactions, but are not 
significant in the present context.) I first assume that only one such primary mode 
is resonantly excited and that none of the natural frequencies of the secondary modes 
approximates 2w (this excludes internal resonance, which is considered in $6). 
Nonlinearity also implies (except for special initial conditions) slow variations of the 
amplitudes and phases of the sinusoidal carriers, which, together with the preceding 
arguments, leads me to posit 

(1.2) 

for the generalized coordinate of the nth mode, where S,, is the Kronecker delta, A, 
2, A,, 8, and 6, are slowly varying, dimensional amplitudes, and, by hypothesis, 
A,, 8, and en are of the order of A2 and B2. 

I obtain the evolution equations for these slowly varying amplitudes in $3 by 
averaging the Lagrangian over a 2n: interval of wt and then invoking Hamilton’s 
principle. The secondary amplitudes A,, . . . prove to be quasi-steady in the sense that 
their temporal derivatives are negligible in (the present approximations to) the 
evolution equations, by virtue of which they may be expressed as quadratic functions 
of A and 8. The elimination of these secondary amplitudes from the average 
Lagrangian then leads to a Hamiltonian system for A  ̂ and 8 which is isomorphic to 
that for a simple pendulum that is subjected to a vertical oscillation of its point of 
support (see Appendix A).  I establish the fixed points and phase-plane trajectories 
of this Hamiltonian system in $4. 

I introduce weak, linear damping in $ 5 ,  assuming the availability of the damping 
ratio S (of actual to critical damping) for the primary mode. This parameter is perhaps 
best determined through the direct measurement of the decay of free oscillations in 
that mode, although theoretical calculations (Miles 1967) can provide reasonably 
accurate values of S for a clean free surface in a hydrophilic basin. Every phase-plane 
trajectory for the damped system spirals into a stable fixed point (at  which the 

7, = d1,(A cos wt + 8 sin w t )  + A, cos 2wt + 8, sin 2wt + en 
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amplitudes became constant) of the evolution equations. There may be one, two, or 
three such fixed points (one of which may be the null point of no relative motion), 
depending on the proximity of w1 and w .  

Only two parameters, which are dimensionless measures of damping and of the 
proximity of w and w,, enter the normalized phase-plane equations; however, the 
determination of the actual displacements and other dynamical quantities from the 
solutions of these normalized equations requires a calculation that is equivalent to 
that of the frequency of free oscillations of small but finite amplitude in the primary 
mode (I (6.5)). Explicit results are available for two-dimensional waves in a rectangular 
basin (Tdjbakhsh & Keller 1960), the simplest (no nodal lines) three-dimensional 
mode in a rectangular basin (Verma & Keller 19621, the dominant axisymmetric mode 
(which has one nodal circle) in a circular cylinder (Mack 1962), and the dominant 
antisymmetric mode (which has one nodal diameter) in a circular cylinder (Miles 
1984). 

The development in $3 1-5 excludes the possibility of internal resonance, which may 
occur if the frequencies of a pair of modes approximate w and no (n = 1,2,3,  . . .). The 
coupling between two such modes decreases with increasing n, and it is only for n = 1 
or 2 that  internal resonance is likely to be observable. 

The case of equal frequencies arises naturally in a circular cylinder, for which the 
non-axisymmetric modes occur in degenerate pairs ; however, the coupled motion of 
such a pair necessarily comprises angular momentum, which cannot be generated by 
vertical excitation. It also is possible to have approximately coincidental eigenvalues 
in the doubly infinite, discrete spectrum for any basin (cf. Cilberto & Gollub 1984). 
I give the general formulation for this problem in Appendix C, but, discouraged by 
the algebraic complexity, have not obtained explicit results for specific cases. 

Internal resonance with w2 = 2w1 for two gravity-wave modes with wavenumbers 
k, and k ,  in cylindrical basin of depth d requires 

k, tanh k,d = 4k1 tanh k l d ,  (1.3) 

which may be achieved by a unique choice of d for any pair of eigenvalues for which 
2 < k2/kl < 4. The lowest such resonance for axisymmetric motion in a circular 
cylinder of radius a corresponds to the modes with one and three nodal circles and 
is given by (Mack 1962) 

k,a = 3.8317, k,a = 10.1735, d / a  = 0.1981. (1.4) 

The coupling coefficient for this pair proves to be rather small (see $6).  An example 
with a much larger coupling coefficient is resonance between the dominant antisym- 
metric and axisymmetric modes, for which (Miles 1984) 

k,a = 1.8412, k2a = 3.8317, d / a  = 0.1523. (1.5) 

I consider the general case of 2: 1 internal resonance in $6. The comprehension of 
two primary modes requires a four-dimensional phase space. I determine the fixed 
points in this space for the special case w, = 2w, (as contrasted with w2 - 2w1 = O(sw,))  
and zero damping. There then is at least one stable fixed point (there may be as many 
as five) for every value of (w - wl)/m, and there are no Hopf-bifurcation points, which 
suggests that, in the presence of small but finite damping, every solution will 
terminate either in the null configuration or in a stable, harmonic oscillation after 
transient motion from specified initial conditions and that neither periodic limit cycles 
nor chaotic motions will be realized. 
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2. The Lagrangian 
We pose the free-surface displacement (relative to the plane of the level surface, 

which is moving with the basin) in the form 

T(X,  t )  = r n ( t )  1c.n(X) ( ~ i n X ) ,  (2.1) 

where repeated indices are summed over the participating modes, the 7, are 
generalized coordinates, the $, are the eigenfunctions determined by 

c c  

( V + k ; ) $ ,  = 0 (X in X), n*V$ = 0 on as, 1c.,$,dX = 6,,S, ( 2 . 2 a , b , c )  

k ,  are the eigenvalues, X is the cross-section of the cylindrical basin, and d,, is the 
Kronecker delta. The corresponding Lagrangian, as given by I(3.6) after setting 
q ,  = T,, &, = 0 and ?i = 2, in 1(3 .5c ) ,  is given by 

J J  

L E (pS)-l ( T -  V )  = la 2 mnrim r i n - i b  + 2 0 )  TnVn? (2 .3 )  

where p is the fluid density, T and V are the kinetic- and potential-energy densities, 
and the inertial matrix [a,,] is a function of the vector (7,). Invoking the quadratic 
truncation amn = &,,a, + a l m n q l  ++ajlmn7j71 (which is consistent with the approx- 
imations in $ 3  below), we obt,ain 

L = fan(ri;-w2,7;) -+%vnTn +ia lmnTlr im rin + i"jlmnTj7l rim j n ,  (2.4) 

where a, = k,' cothk,d = g/w2,, (2 .5)  

d is the ambient depth of the fluid, w,  is the natural frequency of the nth mode (so 
that an is the length of an equivalent pendulum for that mode), 

3. The average Lagrangian 

in the form 
We now invoke the arguments outlined in the fifth paragraph of 8 1 and recast ( 1 . 2 )  

12 

a 1  

q n  = S,,Z{p(7) coswt+y(7)  sinwt)+-{A,(~) cos2wt+Bn(7) sin2wt + C n ( 7 ) } ,  (3.1) 

where I = 0(&al) is a lengthscale (see (3 .7)) ,  

(3.2) 

is a scaling parameter (we may render a, > 0 by an appropriate choice of the origin 
o f t ) ,  p ,  y, A,, B,  and C,  are slowly varying, dimensionless amplitudes, and 

7 = ewt ( 3 . 3 )  



Nonlinear Faraday resonance 289 

is a slow time. We also introduce the frequency parameters 

d - W 2  w--wl 1,- N 

p =  2 4  EW1 

and 

( 3 . 4 ~ )  

(3 .4b)  

Substituting ( l - l ) ,  (2 .1)  and (3 .1)  into (2 .4) ,  invoking (2 .5)  and (3.2)-(3.4),  
averaging over a 2.n interval of wt ,  and neglecting O(e3) on the hypotheses that 
1 = O(E&), p = O(1) and l / Q ,  = 0(1) (SZ, = O ( E )  implies internal resonance, which 
is treated in 56), we obtain 

( L )  = ; q 1 2  [pq -pq +@($I2 + q2)  +p2 - 92 

wherein the dots now signify differentiation with respect to 7 .  It follows from 
Hamilton's principle that ( A )  must be stationary with respect to variations of each 
of p ,  q, A,,  B, and C,. Invoking this requirement for each of the secondary 
amplitudes, we obtain 

(An,Bn) = -Qil ( f i i i n - i a n i i )  ( P 2 - q 2 , 2 ~ q ) ,  C,  = ianl1(p2+q2). (3.6% b) 

Substituting (3.6) into (3 .5) ,  invoking (2 .5 )  and (3 .4b) ,  and choosing 

1 = 2 - k;ltanhk,d, (3 (3 .7)  

where A = ~("1a1111+"nll"nll-~"1(4*L,--1)-1 (4a11,-a,11)2} tanh4 kld, (3 .8)  

we obtain 

where 

( L )  = 4 2 { : ( P q - P q )  + H(P> q ) )  (1 + W),  (3 .9)  

H = ;(@+ 1 )  p 2  +@- 1 )  q2 +$(p2 + q2))" sgn A .  (3.10)  

The preceding formulation may be reduced to  that for weakly nonlinear free 
oscillations (156) by omitting the imposed acceleration Z,, in .L (2 .4 )  and the 
corresponding term p 2 - q 2  in ( L )  (3 .5)  and regarding E as an arbitrary scaling 
parameter, which simplifications yield 

( L )  = ~ E g 1 2 ( p q - p q + p ( p 2 + q 2 ) + ~ b 2 + q 2 ) 2  sgn A } .  (3.11)  

The frequency ofthe free oscillation described by (2.1) and (3 .1)  withp and q constant, 
as determined by requiring ( L )  (3.1 1) to be stationary with respect to p and q and 
invoking ( 3 . 4 ~ )  and (3 .7) ,  then is given by (cf. I(6.5)) 

(3.12) 

- 
where 7; = y ( p 2  + q2)  (3.13) 

is the mean-square displacement of the primary mode,? and 

h = k;l tanhkld (3.14) 

t The mean square over both space and time, as calculated from (2.1), ( 2 . 2 ~ )  and (3.1), is given 
by 7 = z{ 1 + O(e)} .  
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FIQURE 1. the parameters A,  (---) and A ,  (-) for the dominant axisymmetric and antisymmetric 
modes in a circular cylinder of radius a and depth d .  The singularity in A ,  at d / a  = 0.1523 reflects 
the internal resonance (1.5). There are singularities in A, at d / a  = 0.1981 due to the resonance (1.4) 
and at d / a  = 0.3470 due to a resonance between the 01 and 04 modes, but these resonances are 
too narrow to be resolved on the scale of the present drawing. 

is a reference length that reduces to d for shallow water and to l/k, for deep water. 
The calculation of the parameter A ,  which reduces to 1 for two-dimensional, 
deep-water waves (Rayleigh 1915), is pursued in Appendix B. Explicit results for the 
dominant axisymmetric (Mack 1962) and antisymmetric (Miles 1984) modes in a 
circular cylinder, say A ,  and A ,  respectively, are plotted in figure 1 ; 

A,-= (-6.303, m,O, 1.307) at d / a  = (0,0.1981,0.2230, m ) ;  

A ,  = (4.430, m,O, 1.112) a t  d / a  = (0,0.1523,0.5059, m).  

The singularity at d / a  = 0.1981/0.1523 reflects the internal resonance (1.4)/(1.5), the 
former ofwhich is too narrow to be resolved in figure 1 ( A ,  has a second, even narrower 
singularity a t  d /a  = 0.3470 owing to the resonance between the 01 and 04 modes, 
for which k,,a = 3.8317 and k,,a = 13.324). 

The choice (3.7) for 1 is inappropriate not only near A = m ,  but also near A = 0, 
where the higher-order terms incorporated in the present formulation make a null 
contribution to ( L ) ,  and in the neighbourhood of which terms of the sixth order in 
the amplitude of r,~ presumably would need to be retained to obtain a uniformly valid 
description of the nonlinearity. 
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4. Hamiltonian solutions 

interchange p and q throughout the subsequent development. 

we obtain the evolution equations? 

We now assume A > 0. If A < 0 it is necessary only to reverse the sign of p and 

Requiring ( L )  to be stationary with respect to independent variations of p and q,  

in which H appears as a Hamiltonian and p and q are canonically conjugate variables. 
It follows that H is a constant of the motion, by virtue of which the solution may 
be reduced to quadrature. (In fact, the solution may be expressed in terms of elliptic 
integrals; however, this is of only passing interest in the present context.) 

The fixed points (at which p = Q = 0) of (4.1) are given by 

p = q = o ,  ( 4 . 2 ~ )  

p = 0, q = k(1-p); cp < I ) ,  (4.2b) 

p = * ( - l - p ) ! ,  q = 0 (p < - 1 ) .  ( 4 . 2 ~ )  

A straightforward stability analysis (see $5) reveals that the fixed point at p = q = 0 
is stable/unstable for p2 2 1, those of (4.2b) are stable, and those of ( 4 . 2 ~ )  are 
unstable. (The stability criterion for the linear problem, which is governed by 
Mathieu’s equation and corresponds to small perturbations about p = q = 0, is p2 > 1 
(Benjamin & Ursell 1954).) The stable/unstable fixed points are centres/saddle 
points. Summing up, we have the following configurations (see figure 2) : 

( a )  /3 > 1, centre at p = q = 0; 
(b)  - 1 < /3 < 1 ,  saddle point a t  p = q = 0 and two centres a t  p = 0, 

( c )  ,8 < - 1,  three centres a t  p = q = 0 and p = 0, q = f (1 -p); and two saddle 
q =  k(1-p);;  

points a t p  = *(-I-,?);, q = 0. 

We remark that the motion relative to the basin vanishes a t  p = q = 0 and is 
harmonic (within 1 +Ole$)) a t  p = 0, q = (1 -p);. The mean-square displacement 
of the harmonic motion is given by aZ2q2 = i12(1 -p). Invoking (3.7) for 1, ( 3 . 4 ~ )  of 
p, and dividing by h2 (3.14), we obtain 

- 
7 2  2E 
- = - ( l - P )  
h2 A 

= { 1 -(E)2 + 2 ~ +  0(e2) 11 A, 

( 4 . 3 ~ )  

(4.3b) 

which is equivalent to (3.12) for E = 0 and manifests the non-uniform validity for our 
formulation near A = 0. 

The phase-plane trajectories are given by H = constant. Introducing the action- 
angle coordinates E and 19 according to 

p = (2E);cos8, q = (2E);sinB (4.4a, b) 

t The evolution equations (4.1) are isomorphic to (4.9) of Ockendon & Ockendon (1973); in 
particular, my /3 is related to their /3 according to Phl = -2/3,. 
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in (3.10), we obtain 
H = ~2 + E(P + cos 281, (4.5) 

(4.6a, b)  

( a )  The trajectories for p > 1 (figure 2a) constitute a nested set of closed loops 
about the centre a t  p = q = 0 (H = 0) with the family parameter H increasing 
monotonically outward across the set. It follows from (4.66) that each of these 
trajectories is traversed in a counterclockwise sense (with increasing 7 ) .  

(b) The separatrix through the saddle point at p = q = 0 for - 1 < /3 < 1 (figure 
2b) is a vertical figure eight that intersects the q-axis a t  q = f 2?( 1 -/3)+, encloses two 
symmetrically disposed, nested sets of closed trajectories about the centres a t  p = 0, 
q = & (1 -/3);, and is enclosed by a third nested set. H increases monotonically along 
radial lines from each of the centres, a t  which H = -+(l -/3)2, to the separatrix, on 
which H = 0, and then increases monotonically across the outer trajectories. It 
follows from (4.1) that each of the trajectories, including the upper and lower loops 
of the separatrix, is traversed in a counterclockwise sense. 

( c )  The separatrix through the saddle points a t  p = k ( -  1 -/3)$, q = 0 for /3 < - 1 
(figure 2 c )  comprises a pair of closed, intersecting loops that intersect the q-axis a t  
the four points q = & (I/$+ 1). The inner separatrix encloses a nested set of closed 
trajectories about the centre a t  p = q = 0. The outer separatrix encloses two nested 
sets about the outer centres a t  p = 0, q = & (1 - /3)+ and is enclosed by a fourth nested 
set. H decreases monotonically outward from 0 a t  the inner centre to -$(l +p)z  a t  
the inner separatrix, increases monotonically outward along radial lines from 
-t(l-/3)2 at each of the outer centres to -a(l+/3)2 at the outer separatrix, and 
continues to increase monotonically across the outer trajectories. It follows from (4.1) 
that the inner separatrix and the trajectories about the inner centre are traversed 
in a clockwise sense, while the two loops of the outer separatrix, the trajectories about 
the outer centres, and the outer trajectories are traversed in a counterclockwise sense. 

. aH i3H 
ae aE 

E = -- = 2E sin28, 6 = - = 2E+p+cos20. 

5.  Damped solutions 
The incorporation of weak, linear damping in the dynamical formulation is 

straightforward? and leads to the introducton of the terms a(p, q) on the left-hand 
sides of (4.1 a, b) ,  where 

a = a/€, (5.1) 

and S is the ratio of actual to critical damping for free oscillations of the resonant 
mode. The resulting evolution equations are 

@+ap+(p-1+p2+q2)q=0 ,  Q+aq-(/3+1+P2+q2)p = 0. ( 5 . 2 ~ , 6 )  

The fixed points of (5 .2)  are given by (cf. (4.2)) 

(5.3a) 

(5 .3b)  

(5 .3c )  

where cos2q!J = y = (1-aZ)i (a < 1); (5.4) 

t It suffices t o  substitute the dominant terms in (3.1) into the leading terms in the equation of 
motion for q , ,  i j l + 2 S w , ~ , + w f ~ , ,  and compare the results with the linear terms in (4.1). 
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note that (5.3b) and ( 5 . 3 ~ )  differ only in the sign of y. The origin is the only fixed 
point if a > 1 ; conversely, E > S is a necessary condition for subharmonic response. 

The stability of a particular fixed point with respect to a small disturbance 
proportional to exp (UT)  is determined by the roots of the characteristic equation 

Substituting p = q = 0 into (5 .5) ,  we obtain 

d = a2+2ua+a2+/32-l1, ( 5 . 6 ~ )  

from which it follows that the fixed point a t  the origin is stable if and only if 
p” > 1 -a2. Substituting (5.3b,c) into (5 .5) ,  we obtain 

A = g2+2aa+4y(y-P) (/3 < y ) ,  (5.6b) 

d = U ~ + B ~ U + ~ ~ ( Y + P )  (P < -7) ( 5 . 6 ~ )  

respectively, from which i t  follows that the corresponding pairs of fixed points (5.3 b,  c) 
are stable/unstable. The stable/unstable fixed points are sinks/saddle points. 

The Poincar6-Bendixson theorem implies that any solution of (5.2) must tend 
asymptotically to either a fixed point or a limit cycle. The logarithmic contraction 
rate for the area within a closed trajectory is given by (Lichtenberg & Lieberman 
1983) 

as ag 
aP aq 
-+- = -2a. (5.7) 

It follows from (5.7) that limit cycles are impossible and hence that every solution 
must tend to one of the stable fixed points for u > 0. 

Summing up, we have the following configurations for 0 < a < 1 : 

(a )  /3 > y ,  sink a t  p = q = 0; 
(b)  - y < /3 < y ,  saddle point a t  p = q = 0 and two sinks a t  (5 .3b) ;  
( c )  /3 < - y ,  three sinks at p = q = 0 and (5.3b), and two saddle points a t  ( 5 . 3 ~ ) .  

The trajectories for a > 0, which may be determined either through the direct 
The only fixed point for a > 1 is a sink at p = q = 0. 

integration of (5.2) or through the integration of 

or its action-angle (see (4.4)) equivalent, 

d E  BE(sin28-u) 
d0 - 2E+P+cos28’ 
_ -  (5.9) 

spiral inward to one of the sinks in each of configurations (a)-(c). 
The total energy is given by 

B = pgXZ2E{ 1 + O ( E ) } ,  (5.10) 

where p is the fluid density. The action (which is a measure of the energy) a t  the stable 
fixed points is plotted as a function of the tuning parameter /3 in figure 3. If the motion 
is started from rest and /3 is increased through - y ,  E may be expected to jump from 
0 to y and then to decrease linearly to 0 at P = y and remain at 0 as p increases above 
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FIQURE 3. The dimensionless energy at the stable fixed points (5 .3a,b) .  The dashed line 
indicates the jump from E = 0 as B is increased through -7.  

y.  If /3 is decreased through y ,  E may be expected to increase linearly from 0 to some 
value in excess of y for /3 < - y but eventually to  drop to 0 a t  some lower value of 
/3. If the motion is started from a state of finite energy with /3 < - y ,  E may tend 
to 4fy-P) rather than 0, depending on the initial conditions; if u < 1 the dividing 
line for these initial conditions may be approximated by the inner separatrix for 
u = 0:  

(5.11) 2E = 1/31 - cos 28 - 2( 1/31 - cos2 19)l lsin 81 (u 3.0). 

It would be desirable to  confirm these predictions experimentally 

6. Internal resonance (02 x 2 q )  

We now assume that 02-2w1 = O(ew) ,  or, more precisely, 

a1(4&2-aJ1 (4a112-a211)2 = O ( l / s )  (6.1) 

for a particular pair of modes, n = 1 and 2. (Note that (6.1) sharply limits the 
bandwidth of most internal resonances; see below.) Referring to (3.7) and (3.8), we 
find that (6.1) implies IAl = O(l /s )  and I = O ( E ) .  (Note that, as the limit A+cc in 
(4.3) suggests, internal resonance decreases the amplitude of the subharmonic 
response w i s - h i s  that  of $ 3  for sufficiently small 6.) It follows that secondary modes 
are excited only with amplitudes O(e2)  ; accordingly, we replace (3.1) by 

T~ = lnbn(7) cos nwt +qn(7)  sin nwt} ( n  = 1 ,2 ) ,  (6.2) 

where Z l , 2  = O(s) are lengthscales and e and 7 are given by (3.2) and (3.3). The 
corresponding approximation to the Lagrangian, obtained by substituting (1  . l )  into 
(2.4) and neglecting the quartic term (which now is small compared with the 
remaining terms), is 

L = ~ { a n ( r j i - w i T ~ + 4 s w 2 , ~ i  cos2wt)+almnylrjrnrjn}, (6.3) 
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wherein I ,  m, n are summed over 1 ,2 .  Substituting (6.2) into (6.3), averaging over a 
27c interval of ot, introducing (cf. ( 3 . 4 ~ ) )  

r + 9 z  -P,+P-1 Y1  -P1 

-P2-$-1 0 - - q 2  Pl Yl 

- 91 - Pl 0- 2p 

Pl  - q1 -2p 0- 

A =  

and choosing (note that w 2  % Zw, and a2 % $a, in the calculation of the higher-order 
terms) 

. 

we obtain (cf. (3.9) and (3.10)) 

( L )  = Egz~{ t (Pnq , -Pn~n)+f l (p i , q i , p z ,  q z ) } ,  (6.6) 

where f l=1/3 2 n ( & + & ) + W - q ? )  (1 + P , ) + P ~ P I ~ ~ .  (6.7) 

l? = F-ggX12,(p2, + 4;) { 1 + O(E)}.  (6.8) 

Substituting (2.6), together with E = a,/al, into (6.5), and invoking (2 .5 )  for a, and 

I, = 4 ~ , ,  (Cl12[3 + ( 1  - ( k 2 / k 1 ) , }  coth2 k ld ] ) - ' ,  

The total energy is given by (cf. (5.10)) 

a2, we obtain 
(6.9) 

whereC,,,isgiven by ( 2 . 8 ~ ) .  Substitutingk,, k,andd/afrom (1.4)andC1,, = -0.0106 
from table 1 (Appendix 3)  into (6.9), we obtain I, = 32.2a0, which implies that the 
scaling (6.5) is inappropriate for this resonance and that proper scaling requires the 
retention of higher-order terms in the Lagrangian, as in $3. In  contrast, the resonance 
between the dominant axisymmetric and antisymmetric modes in a circular cylinder, 
(1.5), for which C,,, = 0.410 (Miles 1984), yields I ,  = -0.237a0, which implies that  
the scaling (6.5) is appropriate. 

The phase-plane equations implied by (6.6) and (6.7) are (cf. (4.1)) 

PI = (1  -P1)~1+P29,-P,q,, a, = (1  +Pl)Pl+PlP,+919,> (6.10a,b) 

P 2  = -P,P2-P1913 a 2  = P2Pz+i(P?-q3. (6.10 c ,  d )  

Damping may be incorporated by adding (alp, ,  a,ql, a,p,, a2q2) to the left-hand side 
of (6.10a,b,c,d), where a, = S,/c and 6, is the damping ratio for the nth mode. 

We consider further the special case w 2  = 2w,, for which 

p, = 2p1 = 2p. (6.11) 

The fixed points of (6.10) then are given by 

( 6 . 1 2 ~ )  

P, = q2 = 0, (6.12b) 

q 1 = q 2 = 0 ,  p+48(p+1), p2=-((p+1) ( p > O  or p < - l ) .  (6 .12~)  

P, = P, = q1 = 92 = 0, 

q: = 4P(p- I ) ,  p ,  = p- 1 (p > 1 or p < o), 

(6.13) 
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01 I I I I I I 

-2 -1 0 1 

P 
FIGURE 4. The dimensionless energy (6.15) a t  the stable fixed points ( f j . l O a , b , c ) .  The dashed 
lines indicate the jumps in E as /3 is either increased through - 1 or decreased through + 1 .  

Substituting (6.12a,b,c) into (6.13) in turn, we obtain 

A = (CT' + p2 - 1) (8 + 4/3'), (6.14a) 

A = g4 + 4/3( 3/3 - 2) CT' + 1 6/3' ( 1 - /3) , (6.146) 

A = c~~+4/3(3/3+2)~r~+16/3'(/3+1), (6 .14~)  

from which i t  follows that the fixed points (6.12a,b,c) are stable/unstable for: (a) 
p2 3 1, (b )  /3 < O /  > 1, (c) /3 > O /  < - 1. Summing up, we have the following 
configurations : 

(i) 
(ii) 
(iii) 
(iv) 

/3 > 1, three centres (6.12a,c) and two saddle points (6.126); 
0 < /3 < I ,  a saddle point ( 6 . 1 2 ~ )  and two centres (6 .12~) ;  
- 1 < /3 < 0, a saddle point ( 6 . 1 2 ~ )  and two centres (6.12b); 
/3 < -1, three centres (6.12a,b) and two saddle points (6 .12~) .  

The bifurcations a t  /3 = 0 and & 1 are of Poincare's type, a t  which cr goes through 
zero. There are no Hopf-bifurcation points (at which the real part of a pair of 
complex-conjugate zeros of A vanishes and a t  which bifurcation to a limit cycle may 
occur), which suggests that, in the presence of finite but weak damping 
(centers+ sinks), the solution will terminate a t  one of the sinks (which one will depend 
on the initial conditions). We remark that some finite-amplitude harmonic motion 
is possible (although it may be difficult to attain) for every value of /3, in contrast 
to the results in $54 and 5, where /3 < y is necessary for such a motion. 

The dimensionless energy 

E = 3P;+P;)+(P;+P;) (6.15) 

a t  the stable fixed points is plotted as a function of the tuning parameter p in figure 
4. There are now two jumps (at  /3 = & 1) in the equilibrium energy, in contrast to 
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the single jump in figure 3 ;  moreover, the energy decreases as ,8 decreases below 
(increases above) P = 1 ( -  1) and has a minimum a t  /3 = 0. Here again, experimental 
confirmation would be desirable. 

This work was supported in part by the Physical Oceanography Division, National 
Science Foundation, NSF Grant OCE-81-17539, and by a contract with the Office 
of Naval Research. 

Appendix A. Parametrically excited pendulum 

to the vertical displacement 
The point of suspension of a simple pendulum of mass m and length Z is subjected 

zo ( t )  = EZ cos2wt (0 < E 4 1). (A 1) 

The corresponding Lagrangian is 

L = $z2& m(g+ .zo) qi - cos el, 
where 0 is the angular displacement from the stable equilibrium position (in which 
the bob is directly below the point of suspension). 

A suitable form for the solution of the equation of motion implied by (A 2) in the 
limit €40 with 02--o: = O(ew2) ,  where ot = g / l ,  is 

e = 4e&(7) C O S W t + q ( 7 )  sinwt}, r = E o t .  (A 3 a , b )  

Substituting (A 3 )  into (A 2), approximating 1 - cos 0 by 02/2 - e 4 / 4 ! ,  averaging L 
over a 2x interval of ot, and introducing 

we obtain 

( L )  = 8 ~ ~ ~ ~ l @ ~ - ~ ~ + ( ~ + 1 ) p ~ + ( ~ - l ) ~ ~ + + ( ~ ~ + ~ ~ ) ~ } + 0 ( ~ ~ ) ,  (A 5) 

which is isomorphic to (3 .9)  for A > 0. 

Appendix B. Calculation of A 
The calculation of A from (3.8) requires the calculation of .alln, .anll and .alll1 from 

the eigenfunctions and eigenvalues for a particular set of modes. Combining 
(2.5)-(2.7) and (3 .4b)  in (3 .8) ,  we obtain 

A = V'?1 n Fn (kid) -=kc1111 T?, (B 1)  

wherein n is summed over all modes for which C,,, =t= 0, 

' T 
Tn { "T, F, = E3n2+2(q-1+4Li)2- 4Ev1---1 

E n  = k , / k l ,  T, = tanh knd .  (B 3 a , b )  

The normalized axisymmetric modes in a circular cylinder of radius a and depth 
d are described by 

Jo(kn r )  , J 1 ( ~ , )  = 0 ( K ,  = k,a, n = 1,2,  ...). + n = p  
J o  ( K n  1 



Nonlinear Faraday resonance 299 

n Kn C11n 
1 3.8317 -0.87465 
2 7.0156 0.88675 
3 10.1735 -0.01058 
4 13.3237 -0.00114 

TABLE 1 .  The axisymmetric eigenvalues and correlation integrals 

If the primary mode corresponds to  K~ = 3.8317, the non-axisymmetric modes (which 
exhibit the azimuthal variations cos me and sin me in the polar coordinates r and 6 )  
are orthogonal to both $, and $:, in consequence of which they do not enter the 
present calculation, and the required integrals are 

Substituting the numerical values of C,,, (table 1) and C,,,, = 2.5515, together with 
the corresponding eigenvalues, into (B 1) and (B 2), we obtain the result plotted in 
figure 1, which agrees (within the accuracy of his graphs) with that obtained by Mack 
(1962), in whose notation 

The dominant mode in a circular cylinder is described by 

where K ,  = 1.8412. This mode couples with (i.e. Clln + 0 for) the axisymmetric and 
cos28 modes, and the summations in (3.8) are over the radial wavenumbers of these 
two sets of modes. The required calculations have been carried out elsewhere (Miles 
1984) and yield the result plotted in figure 1. 

Appendix C. Internal resonance (w2 x wl) 

and replace (3.1 ) and (3.4 a )  by 
We now aasume that w2-wl = O ( m )  for a particular pair of modes, n = 1 and 2, 

P 
+-{(A,(7) cos2wt+Bn(7) sin2wt+Cn(7)} (C 1) 

and 
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where t is a lengthscale (to be determined), and e and 7 are given by (3.2) and (3.3). 
Substituting (C 1 )  into (2.3) and proceeding as in $3,  we obtain (note that w2 x wl 
implies az x a,) 

+ ("mn, - i a l m n )  ('1 (PmPn - qm qn)  + Bl(pm qn +Pn 9,)) + +lmn C,(pmpn + qm qn)  

+ h a l ( a j l m n  + ajailnm) ( (p jp i  + qjqL) (PmPn + qm qn)  +2(Pl qm - P m  41) (Pjqn -Pnq j ) ) } ]  , 

(C 3) 

wherein p n ,  qn = 0 unless n = 1 or 2. Requiring ( L )  to be stationary with respect to 
each of the secondary amplitudes, we obtain 

( A ,  5 BL 1 = - QL1 ("mnl- i a t m n )  (PmPn - Qm qn,  Pm qn + Pn qm) 3 (C 4a) 

CL = i",mn(PmPn+PmQn), (C 4b) 

(C 5 )  

the substitution of which into (C 3) yields ( L )  in the form (cf. (3.9)) 

( L )  = €g12{~(Pnqn-PnQn)+H(P1,  q l>Pz ,  P z ) ) ,  
with 

H = l p  2 n ( P i + q i ) + i ( P n P n - q n P n )  

++€-I(&,' r-+an(~k +B;) + cn cn +ii"i("jlmn + "j lnm) 

x { ( P ~ P ,  + qj P,) (Pm P n  + qm qn)  + ~ ( P L  4m -Pm P i )  ( ~ j  qn - p n  qj)II> (C 6) 

wherein A, ,  B, and C, are given by (C 4). 
More explicit results require the assumption of specific modes, and the algebra for 

any nontrivial case appears to be formidable. The simplest case is that in which 
and $z  differ only in an azimuthal phase difference of in (as in Miles 1984), but this 
reduces to the case of a single primary mode if the angular momentum is zero (as 
it is for vertical translation of a cylinder after any initial angular momentum has been 
dissipated). 

- Appendix D. Capillary effects sw -aA d Lq.n uii 154 ~33s'  
The capillary energy due to  a uniform surface tension p g  is given by 

where the integral is over the free surface. Substituting (2 .1)  into (D 1) and invoking 

vl/hm. V$,  dS = smn k; x, ss 
which follows from (2.2), we obtain 

V = ipSFkiy2,. (D 3) 

Substituting (3.1) into (D 3) and averaging over wt ,  we obtain 
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Dividing ( V )  by pS (to allow for the normalization of L in ( 2 . 3 ) )  and subtracting 
the result from (3.5), we find that the following changes must be made in (3 .5 )  to 
incorporate capillary effects : replace (3.4a, b )  by 

and 

P* = ( 2 € ) - 1 [ ( 3 2 - 1 - k ; z $  I 
and multiply C,C, by 1 + k2, l$, where 

I* = (F/g)i 

is the capillary length and is approximately 2.8 mm for clean water. It then follows 
that Q, must be replaced by Q,, in (3.6a), the right-hand side of (3 .6b)  must be 
divided by 1 + kk Zi, and (3.8) must be replaced by 

-1 

A = i{al allll+ (1  +k; l$)-lanll (4a,,,-~n11)Z}tanh4k1d. 

(D 7 )  
2 

Appendix E. A note on Dodge, Kana & Abramson (1965) 
Dodge et al. (1965) start from a normal-mode expansion for a circular basin that 

is equivalent to ( 2 . 1 ) .  They then assume that the primary mode is the dominant mode, 
as described by (B 7) above, and deduce that only those secondary modes with 
azimuthal wavenumbers 0 and 2 are excited by the lowest-order (quadratic) nonlinear 
terms. They also argue, on numerical grounds, that only the lowest (wavenumbers 
kol and kZ1) secondary modes need be retained, thereby reducing their system to  three 
degrees of freedom. Starting from Laplace's equation for the velocity potential, the 
kinematic boundary conditions on the walls, and the (nonlinear) kinematic and 
dynamic boundary conditions a t  the free surface and retaining terms of first, second 
and third order in the amplitude of the primary mode, they arrive at) the three 
equations of motion (their (20) and (21)) 

El + ( 1  -4g2c cos 203) a,( 1 + R, + Koa0 - K,u,) + 0.034 780h: 6, 

+ k ,  6; a, + 0.165 1 18iioal -0.198686U,~, + k,Ci,U, - k,Ci2 Ci, = 0, (E 1) 

ii, + A, tanh hob( 1 - 4v2e cos 2crt) a, 

- ~,a1(O.l21 482h0 tanh hob -0.263074hf) 

+Ci: [hi tanhAob(0.070796h~-0.060741) +0.263074h;] = 0, (E 2 )  

a, + A, tanh h,b( 1 - 4~7% cos 2 d )  a, 

+61al(0.350807h2 tanhh2b-0.482670h~) 

+Ci: [h,tanhh,b(0.175403-0.065931hf)-0.482670h~] = 0 (E 3) 

(in their notation except that I have dropped the redundant second subscript on all 
symbols). 

These equations cannot be derived from a Lagrangian of the form (2.3) above. 
which should be possible since they presumably are derived from the same bask 
equations through the expansion of the free-surface displacements in the same set 
of orthogonal modes. An immediate difficulty is posed by the terms in a:, alaO and 
a1a2 in (E l ) ,  none of which should appear in equations of motion derived from i-) 



302 J .  W. Miles 

Lagrangian in which the potential energy is in normal form (contains only squares 
of the generalized coordinates) ; however, this difficulty can be circumvented by 
dividing (E 1 )  through by 1 + K,uf + Kouo - K,u,, and approximating this divisor by 
1 except in the coefficient of a,, where its inverse may be approximated by 
1 - K,  u; - KO a. + K ,  u2. After making this change, the coefficients of a: a, and a,a; 
should be equal, as also should the coefficients of uluo and u,cio and of a1u2 and 
a,a,; in fact, none of these equalities is satisfied (the paired coefficients differ in form, 
so that the difficulty goes beyond numerical inequality). 

R E F E R E N C E S  

BENJAMIN, T. B. & URSELL, F. 1954 The stability of the plane free surface of liquid in vertical 

CILBERTO, R. 8 GOLLTTB, <J. P. 1984 Pattern competition leads to chaos. Phys. Rev. Lett. 

DODGE, F. T., KANA, u. I). & ABRAMSON, N. 1965 Liquid surface oscillations in longit,udinally 

FARADAY, M. 1831 On a peculiar class of acoustical figures, and on certain forms assumed by groups 

GOLLUB, J .  P. & MEYER. C. W. 1983 Symmetry-hreaking instabilities on a fluid surface. Physica 

HENSTOCK, W. & S A N ~ ,  R. L. 1974 On the stability of the free surface of a cylindrical layer of 
fluid in vertical motion. Lett. Heat Mass Transfer 1, 95-102. 

KEOLIAN. R,., TCRKEVICH, L. A , ,  PVTTERMAN, 6. J., RUDNICK, I. & RUDNICK, J. A. 1981 
Subharmonic sequences in the Faraday experiment: departures from period doubling. Phys. 
Rev. Left .  47. 1133-1136. 

LICHTENBERG, A. J .  & LIEBERMAN, M. A. 1983 Regular and Stochastic Motion, pp. 382, 383. 
Springer. 

MACK, L. R.  1962 Periodic. finite-amplitude. axisymmetric gravity waves. J. Geophys. Res. 67, 
829-843. 

3 1 1 ~ ~ ~ .  J. W. 1967 Surface-wave damping in closed basins. Proc. R .  SOC. Lond. A 297, 459-475. 
h h . E s ,  J .  W. 1976 Nonlinear surface waves in closed basins. J. Fluid Mech. 75, 419-448. 
MILES, J. IT. 1984 Internally resonant surface waves in a circular cylinder. J .  F2uid Mech. 

OCKENDON, J. It. & OCKENDOK, H. 1973 Resonant surface waves. ,I. FZuid Mech. 59, 397-413. 
RAYLEIGH, LORD 1883a On maint.ained vibrations. Phil. IMag. 15, 229-235 (ScientiJic Papers, vol. 

RAYLEIGH, LORI) 18836 On the crispations of fluid resting on a vibrating support. Phil. Mag. 16, 
50-58 (Sciuntiyfic Papers, vol. 2, pp. 212-219). 

RAYLEIGH, LORD 1887 On the maintenance of vibrations by forces of double frequency, and on 
the propagation of waves through a medium endowed with a periodic structure. Phil. Mag. 
24, 145-159 (Scientiyfic Papers, vol. 3, pp. 1-14). 

KAYLEIGH, LORD 1915 Deep water waves, progressive or stationary, to the third order of 
approximation. Proc. R. Soc. Lond. A 91, 345-353 (Scientiyfic Papers, vol. 6, pp. 306-314). 

TDJBAKHSH. 1. 8 KELLER. J .  B. 1960 Standing surface waves of finite amplitude. J .  Fluid Mech. 

VER.MA. G. H. & KELLER. J. R .  1962 Three-dimensional standing surface waves of finite amplitude. 

periodic motion. Proc. R.  8oc. Lond. A 225, 505-515. 

52, 922-925. 

excited rigid cylindrical containers. A I A A  J .  3,  68fi-695. 

of particles upon vibrating elastic surfaces. Phil. Trans. R. SOC. Lond. 121, 299-340. 

D 6, 337-346. 

(in press). 

2 ,  pp. 188-193). 

8. 442-45 1. 

f’hys. Fluids 5, 52-56. 


